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J. Phys. A: Math. Gen. 18 (1985) 3141-3150. Printed in Great Britain 

Scattering operators on Fock space: I. Compact groups and 
internal symmetries 

W H Klinkt 
Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242, 
USA 

Received 7 March 1985 

Abstract. The symmetric Fock space for a given representation of a compact internal 
symmetry group is shown to be naturally associated with an induced representation space, 
induced by a unitary group. The induced representation space is a Hilbert space over the 
complex sphere, and the orbits on this complex sphere with respect to the internal symmetry 
group give rise to a double coset decomposition. A scattering operator acting on double 
coset representatives only is shown to be unitary, invariant with respect to the internal 
symmetry group, and include particle production. A simple example in which positively 
and negatively charged mesons generate a Fock space with respect to a U ( l )  internal 
symmetry group is given. 

1. Introduction 

Because the strong nuclear forces are short range, a natural theoretical quantity with 
which to investigate these forces is the scattering operator. Whether it is viewed as a 
derived quantity, as in the case of quantum field theory, or is viewed as fundamental, 
as in analytic S matrix theory, the scattering operator provides a direct link between 
experimental results and theoretical considerations. Of particular interest is that any 
relativistic scattering operator must necessarily deal with production and other multi- 
particle phenomena. 

Many properties of the scattering operator are model independent, in the sense 
that however the scattering operator is obtained, these properties must still hold. Such 
properties include, but are not exhausted by, unitarity, which expresses the conservation 
of probability, invariance with respect to an underlying group, from which the conserva- 
tion laws arise, crossing, which deals with the interplay of particles and antiparticles, 
relativistic causality and cluster properties. 

Further, many of the model-independent properties of the scattering operator have 
a group theoretical origin-the invariance of the scattering operator is an obvious 
example. The group in question is generally of the form P x K, where P is the PoincarC 
group, reflecting the spacetime properties of the scattering operator, while K is a 
compact group such as SU(2) or SU(3), reflecting the internal symmetry properties of 
the scattering operator. The goal of this series of papers is to find a representation of 
the scattering operator for which the above mentioned properties are automatically 
satisfied. Some of these properties-such as relativistic causality and cluster proper- 
ties-are associated only with the PoincarC group. Other properties-such as unitarity, 

t This work was supported in part by the Department of Energy. 
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invariance and crossing-are associated with both the PoincarC group and the internal 
symmetry group. For example, the invariance of the scattering operator under P X  K 
means that its kernel is diagonal in energy and momentum-reflecting the representation 
structure of the PoincarC g r o u p a n d  diagonal in the irreducible representations of 
the internal symmetry group. 

For all types of strongly interacting particles-such as pions and nucleons-the 
representation of the scattering operator should automatically include production and 
other many-body phenomena, as well as the bosonic or fermionic nature of the particles. 
It is therefore natural to choose as a starting point the many-particle Fock space 
generated by the underlying representation of the group. But such a space is generally 
not well suited for building in the desired properties of the scattering operator. So it 
will be necessary to find other spaces which, while not as physically transparent as 
the Fock space nevertheless, make it easier to deal with the physical requirements 
imposed on the scattering operator. 

In this first paper attention will be focused exclusively on internal symmetries and 
all spacetime dependence of the scattering operator will be suppressed. The Fock 
space will then be the many-particle space generated by a multiplet of bosons such as 
the three-pion multiplet for isospin symmetry or the eight-meson multiplet associated 
with SU(3) flavour. We will exhibit a representation of the scattering operator on this 
many-particle internal symmetry Fock space which is unitary, invariant with respect 
to the internal symmetry, and has particle production. Crossing properties with respect 
to internal symmetries will be discussed in a future paper. 

The main reason for not dealing with the PoincarC group is that the mathematical 
analysis is more complicated for a non-compact group such as the PoincarC group, or 
even P x K, than with a compact group alone. We hope, however, in succeeding papers 
to generalise the techniques introduced here and thereby find representations for 
scattering operators that are relativistically invariant, unitary, and have particle pro- 
duction. 

Moreover, to have representations of the scattering operator with respect to a 
compact internal symmetry is of interest because there are physical consequences of 
internal symmetries independent of spacetime considerations. For example, if the 
internal symmetry is charge, with U(  1) the associated internal symmetry group, and 
the Fock space is generated by the two-dimensional space consisting of $1 and -1 
charges, then the Fock space can be interpreted as the many particle space of positively 
and negatively charged pions. A representation of the scattering operator for this 
example is given in 0 4. 

For the case of compact internal symmetries, there are two key steps needed to 
construct representations of the scattering operator. First, for bosons the Fock space 
generated by the internal symmetry is shown to be isomorphic to the Fock space 
generated by the fundamental representation of a unitary group; we show that this 
Fock space in turn can naturally be associated with an induced representation space 
of the unitary group. The analysis of these spaces is carried out in 0 2.  

The induced representation space is actually a Hilbert space over the complex 
sphere. The internal symmetry scattering operator is then defined to be a unitary 
operator on this Hilbert space over the complex sphere. If the scattering operator acts 
only on the orbits of the complex sphere (with respect to the internal symmetry group), 
we show that the scattering operator is invariant with respect to the underlying internal 
symmetry group. Stated differently, if the scattering operator acts only on double coset 
representatives, then it will be invariant with respect to the underlying internal symmetry 



Scattering operators on Fock space: I 3143 

group. When transformed back to the original Fock space, the scattering operator is 
shown to have all the desirable physical properties mentioned earlier. This part of the 
analysis is carried out in § 3, while the connection with the complex sphere is given 
in the appendix. 

2. S( V) is equivalent to an induced representation 

Let V be the (not necessarily irreducible) representation space of a compact group K, 
of dimension N. Then the symmetric Fock space is 

S ( V ) =  ov,,, 
n = O  

where V,, is the n-fold symmetric tensor product, Vn = (VO..  .O V)sym. 

Ton-That 1982, Barut and Raczka 19771); it is also of dimension N, so that 
Now consider the fundamental representation space V(lO...O) of U( N) (Klink and 

S (  V) = S( v(lo-.o)). 

However, it is known (Weyl 1946) that the n-fold symmetric tensor product of 
is simply V'"o-o'; that is V(l0 ... 0 )  

n 7 (2) 
vu0 ... 0 )  = v ( n O  ... 0 )  

where ( n o . .  . 0) is an irreducible representation of U(N). Thus 

But XT=o@ V('"...') can be written as an induced representation space (Barut and 
Raczka 1977). To see this, consider the induced representation of U( N )  induced from 
the identity representation of U( N - 1). The representation space on which this induced 
representation acts is denoted by L2[U( N)]/[U( N - 1) + 11 and given by 

I I S I I ' = ~ d g I f ( s ) l ' < ~ ~  g e  U(N),  h E U ( N - 1 ) ) .  (4) 

The number of times an irreducible representation (m) = (m, . . . m N )  of U ( N )  occurs 
in L2[U( N)]/[U( N - 1) -, 13 can be computed using the Frobenius reciprocity theorem 
(Barut and Raczka 1977): 

multiplicity ( (  m) in L') 
= multiplicity (identity representation of U( N - 1) in 
(m) of U( N) restricted to U( N - 1)). 

But from the Gelfand betweenness relations (Klink and Ton-That 1982, Barut and 
Raczka 1977), the number of times the identity representation of U( N - l ) ,  ( 0 . .  . 0) 
occurs in (m) = (ml, . . . , m N )  is 0 unless (m) = (n, 0, . . . , 0), and then the multiplicity 

t For a more general discussion of the U(N) groups see especially chapters 8 and 10. 
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is 1. It follows that 

Thus, it is seen that the symmetric Fock space of V (or V"' 'I), S (  V), is isomorphic 
in a natural way to an induced representation space L2[U( N)]/[U( N - 1) + 13. 

Though the spaces V (the representation space of K) and V"' O) (the fundamental 
representation space of U ( N ) )  are isomorphic because they have the same (finite) 
dimension, the bases may look very different for the two spaces. Since K is a compact 
group of internal symmetries, there is a basis dictated by physical considerations for 
V, which is denoted by ez, i = 1 . . . N. With this basis one can compute the matrix 
elements 

D,,,(k) = ( e , ,  uke, 1, k E  K, the representation of K on V, (6) 

which are N x N unitary matrices. Thus, D,, (k)  E U ( N )  and D,, ( K )  is a subgroup 
of U( N ) .  

can be reduced to irreducible 
representations of D,, ( K ) ,  so that 

Since D,, ( K )  is a subgroup of U( N ) ,  the space V'"O 

where ,y is an irreducible representation of D,,.(K) and 117 a multiplicity label. Finally, 

gives the decomposition of the symmetric Fock space into irreducible representations 
of K via representations of U( N ) .  

Actually, such a decomposition of S( V) is independent of U( N )  and depends only 
on how symmetric tensor products of V decompose into irreducible representations 
of K.  

3. The scattering operator on S( V )  

In analogy with the usual scattering operator, which maps the Fock space of a 
representation of the PoincarC group into itself, we define S as a unitary operator from 
S(  V) to S( V )  satisfying 'relativistic invariance': 

suk = uks on S ( V ) ,  (9) 

where k E K and is the representation of K on S(  V) inherited from the representation 
of K on V. What is here called 'relativistic' invariance is seen to be simply the statement 
that S commutes with U,. 

The goal of this section is to find a natural representation of S on S (  V) so that S 
is automatically unitary, commutes with K, and contains 'particle production'; that is, 
we want a representation of S not diagonal in n-there should be a mixing of particle 
number. 

To find such a representation of S, it is most natural to work with the space 
L2[U(N)]/[U(N- l ) +  13. Now L2 was defined in § 2 as an induced representation 
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space; the induced (reducible) representation of U( N )  is given by right translation: 

Consider next the double coset decomposition of U(N) given by 

U(N-l) \ (U(N>/Dii , (K)> U(N- l ) \ (U(N) /D(K)) .  

Define the map TD from L2 to representation spaces of K by 

( TDf) ( k, =f( gDD ( k, (11 )  

where gD is a double coset representative. Then T,L’ forms a representation space 
of K, with the representation given by 

where d p (  D )  is the measure associated with the double cosets. 
Now define S on TD f 5 fD as 

(SfD)(k) E J’ dp(D’)K(D,  D‘)fD’(k), 

where X ( D ,  D’) is a kernel depending only on double coset labels. It is easy to see 
that S commutes with &: 

Further, the kernel K ( D ,  D’) can easily be made unitary w!th respect to dp (D) .  Thus, 
the representation of S given in equation (13 )  can be made unitary and commutes 
with the action of K. 

To show how S changes the number of particles, it is most useful to go to the 
‘partial wave’ space V;,, ,  given in equation (7) .  We want to show that, in general, the 
action of S on V:,, changes the particle number n. 

To that end, we want to find a map from TDL2 to V:,,. Define the mixed basis 
matrix element of U ( N )  as 

D::]xqi(g) = ( ( n o . .  . o), [OIIRgl(nO . * OIxqi), (15 )  

where ( n )  stands for the irreducible representation ( n o  . . . 0) of U( N ) ,  [O] stands for 

the Gelfand pattern and xqi are the labels of the irreducible representation, 
0 .  . . O  

* . * 
0 
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multiplicity and basis, respectively, of the subgroup D(K)  of U ( N ) .  How one con- 
structs such a matrix element will be discussed in the appendix. 

Notice that D[,"jxvi(g) is an element of L2[U( N)] / [U(N - 1) + 11, since it transforms 
to the left as the identity representation of U ( N  - 1 )  and is square integrable with 
respect to the Haar measure of U( N ) .  Therefore, it makes sense to write ( TDD[o"lxvi)( k). 
The mapping A from L2 to S (  V) is then given by 

It is seen that the kernel Kx(nv, n'v ' )  is diagonal in x ('relativistic' invariance) 
and pushes n, the number of particles, and 17, the degeneracy parameters (which would 
correspond to subenergies if K could be replaced by the PoincarB group) around to 
different values n'v'. Further K x ( n v ,  n'v') can be made unitary with respect to the 
labels nv, n'v ' .  So we have constructed a representation of the scattering operator 
which is unitary, 'relativistically' invariant, and contains 'particle production', at least 
with respect to any internal symmetries generated by the representation of a compact 
group. 
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4. A simple example 

We consider in this section a U ( l )  internal symmetry corresponding to charge and 
acting on a two-dimensional representation space V consisting of +1 and -1 charges. 
The two elements in V can be thought of as a positive and negative pi meson; then 
S (  V) is the space of all possible combinations of T+ and 7 ~ -  particles. 

Since V is a two-dimensional (reducible) representation space of U( l ) ,  the unitary 
group with a fundamental representation that is two dimensional is U(2), and its 
fundamental representation space is written V( lO) .  

The matrix element D( k) of equation ( 6 )  is given by 

Dii , (0)  = ("@ ) = D(6) E U(2) o e-" 

and in order to compute the mixed basis matrix element of equation (19, it is necessary 
to find the charge content Q of the irreducible representation ( n o )  of U(2). Now a 
polynomial basis for the ( n o )  representation of U(2) is given by Klink and Ton-That 
(1982) and Barut and Raczka (1977) 

with 

In particular, 

which means that the charge content of the ( n o )  representation is Q = 2k - n, k = 
0, .  . . , n, or Q = -n,  - n  +2, .  . . , n -2, n. A charge state in V("') can thus be written as 

- 1 / 2  

I( no), Q )  = e$"(g)  = giy+Q)/2gi : -Q) /2[  (T> n + Q  ! ( yQ) !] (22) 

and for a given n, Q ,  the number of positive pions n,  and negative pions n- is given 
by n,  + n- = n, n ,  - n- = Q, so that (22) can also be written as 

e g o )  = g ; r g ; f (  n+! n-!)-'/'. 

We now turn to the computation of the double cosets. The relevant homogeneous 
space is [U(2)]/[U(l)], consisting of elements (:;) = z, with ztz = 1 and a measure 
given by d p ( z )  = dz, dz2 G(ztz- 1). The orbits of 2, with respect to D(U(1)) will then 
give the double coset representatives needed for the mixed basis matrix element. Since 
D(6) = (e 'e  p ) ,  it is clear that U ( l )  acts only on the phases of z = (i;); writing 

(sin a ei*l) = ( eie o )(sin a ei") O c a c i ~  (23) 
cos a ei+ ' Z =  0 ,-io cos a ei*2 

gives d1 = 4 + 6, 42 = 4 - 6, with 
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so the double coset measure is 

I d p ( D )  = sin 2a d a  Iozr d 4  

and the double coset representative can be chosen as 

cos a sin a 
-s ina cos a 

gD = ei@ 

Finally, the mixed basis matrix element 

Dg:’(gD) ( ( n o ) ,  [ol lRg, l (no) (?)  (26) 

is needed to compute the kernel, equation (18). This is a standard SU(2) matrix 
element and will not be given here. The kernel becomes 

Ko(n, n’) = d p ( D )  dp(D’)Dc:’*(gD)K(D, D’)DC$’(gb) (27) I 
with K ( D ,  D‘) = K ( a ,  4 ;  cu’4’) any unitary ‘matrix’ with respect to the measure (24). 

5. Conclusion 

We have exhibited a representation of the scattering operator for compact internal 
symmetry groups that is invariant with respect to an internal symmetry group K, 
unitary, mixes particle number and preserves the bosonic character of the underlying 
particles. The representation is given in terms of a kernel over double coset parameters: 
the double coset representatives themselves come from U ( N  - 1)\U( N)/D(K) ,  or 
what is equivalent, the orbits of the complex N sphere with respect to the subgroup 
D( K )  of U( N ) .  Except for the unitarity requirement, this kernel over double cosets 
is quite arbitrary, so other physical requirements are needed to further constrain the 
representation. 

One such requirement is crossing symmetry, whereby the amplitudes for direct and 
crossed channels of multiparticle reactions are related. In succeeding papers further 
physical requirements such as crossing symmetry will be analysed to see how they 
constrain the set of unitary invariant scattering operators. 

Though the formalism presented here is general in the sense that any internal 
symmetry group K with representation space V generates a representation of the 
scattering operator, what is of most physical interest is when K = SU(3)R,,,,, and V is 
the eight-dimensional representation of SU(3). What must then be computed are the 
matrix elements of SU(3) in the eight-dimensional representation, so that the orbits 
of the eight-dimensional complex sphere with respect to these matrix elements can be 
obtained. The resulting double coset parameters can then be used in the mixed basis 
matrix elements D[o“p$’(gD), where ,y is an irreducible representation of SU(3) and 7) 
a multiplicity label arising from the reduction of the ( n o  . . . 0) representation of U(8) 
to SU(3) representations. 

In this paper only symmetric Fock spaces associated with bosons have been 
considered. Of obvious interest are fermion Fock spaces arising from compact internal 
symmetries such as SU(2) or SU(3). Since such fermion Fock spaces are finite 
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dimensional-in contrast to the boson Fock spaces considered in this paper-tech- 
niques other than those given in this paper will be needed to construct unitary invariant 
scattering operators. These topics will be discussed in a succeeding paper. 

Finally, of course, one would like to generalise the techniques introduced in this 
paper to non-compact groups such as the PoincarC group. It should be pointed out 
that all known solutions of model field theories give scattering operators that do not 
allow for particle production (Ruisenaars 1980). So it is of obvious interest to find 
representations of the scattering operator on a Fock space generated by representations 
of the PoincarC group P, or P x K, that do allow for particle production, as was the 
case for the scattering operators, equation (18), for internal symmetries. This topic 
will also be discussed in a succeeding paper. 

Appendix. The homogeneous space U(N)/U(N - l), double cosets and mixed basis 
matrix elements 

To find the double cosets U( N - 1)\U( N)/D(K), it is most convenient to introduce 
the homogeneous space U( N) /U(  N - 1 )  and then see how elements D( k ) ,  k E K push 
around points in U( N) /U(  N - 1). Now U( N)/U(  N - 1) can be realised as the complex 
sphere; that is, let z be the column vector z1 . . . z,, and consider the complex manifold 

with the measure dw(z) = dz, . . . dzN S ( z t z  - 1). Then gz E ZN for g E U( N )  and if the 
stability point is chosen as zo = (:), it is clear that the subgroup U( N - l ) ,  imbedded 
in U(N)  by 

Now D(K) is the subgroup of U( N )  obtained from unitary matrix elements of K. 
Since D( k )  E U( N ) ,  k E K, D( k ) z  is again an element in Z, ; in particular the subgroup 
of K leaving an arbitrary point z E Z, invariant, i.e., D ( k ) z  = z, is useful in actually 
choosing double coset representatives, for the elements of this subgroup can be ignored, 
while the remaining (coset) elements of K do in fact push points z around. 

The connection between the action of the group U(N)  on Z, and the induced 
representation space introduced in (4) is given in the following way: the representation 
space of U ( N )  induced by the identity representation of U ( N - 1 )  can be written 
as a representation space over [U(N)]/[U(N- l ) ]  = 2,. Let YE 
L*{[U(N)]/[U(N- l ) +  11) and define a map F from L2 to functions over Z, by 

y )  leaves zo invariant. 

where z E Z,, and g(z)  is a coset representative satisfying 7 = g(z)z,,, g E U( N ) .  The 
induced representation R, on L,2 becomes 

where go€ U ( N ) ,  h E U ( N -  1 )  and use has been made of the fact that f ( h g )  = f ( g ) ,  
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f~ LL. Further 

g - ' ( z ) g o =  hg- ' ( z ' )  

gog(z ' )  = g ( z ) h  

gog(z')zo = g ( z ) h z o  

g o z ' = g ( z ) z o = z  

and applying zo to both sides of (A4) gives 

('44) 

( - 4 5 )  

so z ' =  g i ' z .  Thus with our convention, with the induced representation being given 
by right translation (see equation ( lo)) ,  the action of the group on manifold points 
z E 2, is given by the inverse element, equation (A3). 

This finally leads to the computation of mixed basis matrix elements needed for 
the kernel of the S operator. Since D(K)  is a subgroup of U ( N ) ,  one can ask how 
the irreducible representation ( n o  . . . 0) of U( N )  decomposes into irreducible rep- 
resentations of K. This decomposition was written as 

X.? 

in 0 2, where ,y is an irreducible representation of K and 7 a multiplicity label. Then 
it is possible to choose a basis in V(""-"' that involves x, 7 and a basis set i depending 
only on the irreducible representations of K. Write this basis I (n0 . .  . 0); xvi). We 
wish to compute the matrix element 

D[Onjxvi(y)  ( ( n o  * . * 0);  [~lIRyj(nO. 9 * 0) ;  X V ~ ) ,  ('46) 

where y E GL( n, C ) .  (It is easiest to compute matrix elements for GL( n, C )  and then 
restrict to elements of U(N).)  

Now the basis elements (no .  . . 0); [O]) are most easily realised as functions over 
GL(n, C ) ;  in particular 

Using the differentiation inner product gives the normalised polynomial basis element 

The harder basis element to compute is l(n0. . . 0); xq-i). Without specifying the 
compact group K and the representation space V ,  it is difficult to concretely realise 
such a basis element. 
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